\[ \newcommand{\argmin}{\operatorname{argmin}} \newcommand{\sign}{\operatorname{sign}} \newcommand{\diag}[1]{\operatorname{diag}(#1)} \newcommand{\prox}[2]{\operatorname{prox}_{#1}(#2)} \]

1 Horseshoe Plus

The horseshoe+ prior, as a scale mixture of normals, is given by \[ \begin{align*} (\theta_j | \lambda_j, \tau) &\sim \operatorname{N}(0, \lambda_j^2) \\ \lambda_j &\sim \operatorname{C}^+(0,\eta_j \tau) \\ \eta_j &\sim \operatorname{C}^+(0,1) \end{align*} \] The original horseshoe is \[ \begin{align*} (\theta_j | \lambda_j, \tau) &\sim \operatorname{N}(0, \lambda_j^2) \\ \lambda_j &\sim \operatorname{C}^+(0,\tau) \end{align*} \]

2 Simulations

In the following simulations we generate data according to \[ \begin{align*} y_k &\sim \operatorname{N}\left(\theta, \bf{I}\right) \\ \tau &\sim \operatorname{C}^+(0,1) \end{align*} \]

Qn=1 
A=10
J=100 
theta.true = c(rep(A,Qn),rep(0,J-Qn))

We construct a signal with 1 non-zero components of magnitude 10 and dimension \(J=100\).

We generate the data with the following:

test.data = list('J'=J, 'K'=1,
                 'y'=rnorm(J,theta.true,1))

2.1 Estimation

First, we load the necessary R packages:

library(rstan)
set_cppo("fast")
library(ggplot2)
library(plyr)
library(reshape2)

The horseshoe+ is implemented in Stan with the following:

stan.hsplus.code = "
  data {
    int<lower=0> J; 
    vector[J] y; 
  }
  parameters {
    vector[J] theta_step; 
    vector<lower=0>[J] lambda; 
    vector<lower=0>[J] eta;
    real<lower=0> tau;
  }
  transformed parameters {
    vector[J] theta; 
    theta <- ((theta_step .* lambda) .* eta) * tau;
  }
  model {
    tau ~ cauchy(0, 1);
    eta ~ cauchy(0, 1);
    lambda ~ cauchy(0, 1);
    theta_step ~ normal(0, 1);
    y ~ normal(theta, 1);
  }  
"

and the regular horseshoe:

stan.hs.code = "
  data {
    int<lower=0> J; 
    vector[J] y; 
  }
  parameters {
    vector[J] theta_step; 
    vector<lower=0>[J] lambda; 
    real<lower=0> tau;
  }
  transformed parameters {
    vector[J] theta; 
    theta <- (theta_step .* lambda) * tau;
  }
  model {
    tau ~ cauchy(0, 1);
    lambda ~ cauchy(0, 1);
    theta_step ~ normal(0, 1);
    y ~ normal(theta, 1);
  }  
"

and the \(\operatorname{N}(0,300)\):

stan.norm.code = "
  data {
    int<lower=0> J; 
    vector[J] y; 
  }
  parameters {
    vector[J] theta; 
  }
  model {
    theta ~ normal(0, sqrt(300));
    y ~ normal(theta, 1);
  }  
"

It’s necessary to compile the code in Stan (we use Clang):

stan.hsplus.fit = stan_model(model_code=stan.hsplus.code, model_name="hs+ cauchy")
stan.hs.fit = stan_model(model_code=stan.hs.code, model_name="hs cauchy")
stan.norm.fit = stan_model(model_code=stan.norm.code, model_name="normal")
n.iters = 1500
n.chains = 1

Stan is run with 1 chains of 1500 iterations each.

2.2 Horseshoe+ Results

smpls.hsplus.res = sampling(stan.hsplus.fit, 
                            data = test.data, 
                            iter = n.iters,
                            #init = 0,
                            #seed = rng.seed, 
                            chains = n.chains)
theta.smpls.hsplus = extract(smpls.hsplus.res, pars=c("theta"), permuted=TRUE)[[1]]

hsplus.sample.data = melt(extract(smpls.hsplus.res, permuted=TRUE))
colnames(hsplus.sample.data) = c("iteration", "component", "value", "variable")
hist.hsplus.ci.pct = 0.60

Next, we produce a histogram of the data within a 60% interval of the \(\theta\) sum of squares for the prior and posterior distributions:

post.sum.theta.hsplus = apply(theta.smpls.hsplus, 1, function(x) crossprod(x))
prior.sum.theta.hsplus = replicate(nrow(theta.smpls.hsplus), 
                                     {
                                     tau = rcauchy(1, 0, 1)
                                     eta = rcauchy(J, 0, 1)
                                     lambda = rcauchy(J, 0, abs(tau * eta))
                                     theta = rnorm(J, lambda, 1) 
                                     return(crossprod(theta))
                                     })
sum.dist.hsplus = rbind(data.frame(type="prior", value=prior.sum.theta.hsplus),
                          data.frame(type="posterior", value=post.sum.theta.hsplus))

hist.quants.hsplus = quantile(sum.dist.hsplus$value, probs=c(hist.hsplus.ci.pct, 1.0-hist.hsplus.ci.pct))
hist.data.hsplus = subset(sum.dist.hsplus, 0 < value & value < max(hist.quants.hsplus))
hist.breaks.hsplus = hist(hist.data.hsplus$value, plot=FALSE, breaks="Scott")$breaks
ggplot(hist.data.hsplus, 
       aes(x=value, group=type)) + geom_histogram(aes(fill=type, y=..density..), breaks=hist.breaks.hsplus) + 
xlab("sum")

The summary statistics for the prior and posterior sum samples, respectively:

##           Min.        1st Qu.         Median           Mean        3rd Qu. 
##             89          36218         390121    50455223370        4975787 
##           Max. 
## 32421947760000
## sd=1190336815195.426025
##         Min.      1st Qu.       Median         Mean      3rd Qu. 
##  49.58601218  94.14607101 109.23103490 109.85797660 125.45867400 
##         Max. 
## 181.37020090
## sd=23.200712

2.3 Horseshoe Results

smpls.hs.res = sampling(stan.hs.fit, 
                        data = test.data, 
                        iter = n.iters,
                        #init = 0,
                        #seed = rng.seed, 
                        chains = n.chains)
theta.smpls.hs = extract(smpls.hs.res, pars=c("theta"), permuted=TRUE)[[1]]

hs.sample.data = melt(extract(smpls.hs.res, permuted=TRUE))
colnames(hs.sample.data) = c("iteration", "component", "value", "variable")
hist.hs.ci.pct = 0.70

Next, we produce a histogram of the data within a 70% interval of the \(\theta\) sum of squares for the prior and posterior distributions:

post.sum.theta.hs = apply(theta.smpls.hs, 1, function(x) crossprod(x))
prior.sum.theta.hs = replicate(nrow(theta.smpls.hs), 
                                     {
                                     tau = rcauchy(1, 0, 1)
                                     lambda = rcauchy(J, 0, abs(tau))
                                     theta = rnorm(J, lambda, 1) 
                                     return(crossprod(theta))
                                     })
sum.dist.hs = rbind(data.frame(type="prior", value=prior.sum.theta.hs),
                          data.frame(type="posterior", value=post.sum.theta.hs))

hist.quants.hs = quantile(sum.dist.hs$value, probs=c(hist.hs.ci.pct, 1.0-hist.hs.ci.pct))
hist.data.hs = subset(sum.dist.hs, 0 < value & value < max(hist.quants.hs))
hist.breaks.hs = hist(hist.data.hs$value, plot=FALSE, breaks="Scott")$breaks

ggplot(hist.data.hs, 
       aes(x=value, group=type)) + 
geom_histogram(aes(fill=type, y=..density..), breaks=hist.breaks.hs) + 
xlab("sum")

The summary statistics for the prior and posterior sum samples, respectively:

##            Min.         1st Qu.          Median            Mean 
##            81.8          1801.8         16320.7    2337635840.0 
##         3rd Qu.            Max. 
##        255297.5 1340189075000.0
## sd=49879953110.481285
##         Min.      1st Qu.       Median         Mean      3rd Qu. 
##  57.48049522  96.36848540 110.39041150 111.72116440 126.58787840 
##         Max. 
## 188.45020420
## sd=21.904846

3 Normal Results

smpls.norm.res = sampling(stan.norm.fit, 
                        data = test.data, 
                        iter = n.iters,
                        #init = 0,
                        #seed = rng.seed, 
                        chains = n.chains)
theta.smpls.norm = extract(smpls.norm.res, pars=c("theta"), permuted=TRUE)[[1]]

norm.sample.data = melt(extract(smpls.norm.res, permuted=TRUE))
colnames(norm.sample.data) = c("iteration", "component", "value", "variable")

Next, we produce a histogram of the \(\theta\) sum of squares for the prior and posterior distributions:

post.sum.theta.norm = apply(theta.smpls.norm, 1, function(x) crossprod(x))
prior.sum.theta.norm = replicate(nrow(theta.smpls.norm), 
                                     {
                                     theta = rnorm(J, 0, 1) 
                                     return(crossprod(theta))
                                     })
sum.dist.norm = rbind(data.frame(type="prior", value=prior.sum.theta.norm),
                          data.frame(type="posterior", value=post.sum.theta.norm))

hist.data.norm = sum.dist.norm
hist.breaks.norm = hist(hist.data.norm$value, plot=FALSE, breaks="Scott")$breaks

ggplot(hist.data.norm, 
       aes(x=value, group=type)) + 
geom_histogram(aes(fill=type, y=..density..), breaks=hist.breaks.norm) + 
xlab("sum")

The summary statistics for the prior and posterior sum samples, respectively:

##         Min.      1st Qu.       Median         Mean      3rd Qu. 
##  60.55858035  89.74497565  99.02640867  99.50633201 107.77446020 
##         Max. 
## 155.45921150
## sd=13.987617
##        Min.     1st Qu.      Median        Mean     3rd Qu.        Max. 
## 207.9682104 268.7893088 290.1336180 291.4013372 311.2445292 391.4839811
## sd=30.946514